
Journal of Computational Physics 229 (2010) 7692–7714
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
High-order finite-element seismic wave propagation modeling with MPI
on a large GPU cluster

Dimitri Komatitsch a,b,*, Gordon Erlebacher c, Dominik Göddeke d, David Michéa a,1

a Université de Pau et des Pays de l’Adour, CNRS & INRIA Magique-3D, Laboratoire de Modélisation et d’Imagerie en Géosciences UMR 5212,
Avenue de l’Université, 64013 Pau Cedex, France
b Institut universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France
c Department of Scientific Computing, Florida State University, Tallahassee 32306, USA
d Institut für Angewandte Mathematik, TU Dortmund, Germany

a r t i c l e i n f o a b s t r a c t
Article history:
Received 24 December 2009
Received in revised form 14 June 2010
Accepted 14 June 2010
Available online 25 June 2010

Keywords:
GPU computing
Finite elements
Spectral elements
Seismic modeling
CUDA
MPI
Speedup
Cluster
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.06.024

* Corresponding author at: Université de Pau et de
UMR 5212, Avenue de l’Université, 64013 Pau Cede

E-mail addresses: dimitri.komatitsch@univ-pau.f
Göddeke), davidmichea@gmail.com (D. Michéa).

URLs: http://www.univ-pau.fr/~dkomati1 (D. Ko
~goeddeke (D. Göddeke).

1 Present address: Bureau de Recherches Géologiq
We implement a high-order finite-element application, which performs the numerical sim-
ulation of seismic wave propagation resulting for instance from earthquakes at the scale of
a continent or from active seismic acquisition experiments in the oil industry, on a large
cluster of NVIDIA Tesla graphics cards using the CUDA programming environment and
non-blocking message passing based on MPI. Contrary to many finite-element implemen-
tations, ours is implemented successfully in single precision, maximizing the performance
of current generation GPUs. We discuss the implementation and optimization of the code
and compare it to an existing very optimized implementation in C language and MPI on a
classical cluster of CPU nodes. We use mesh coloring to efficiently handle summation oper-
ations over degrees of freedom on an unstructured mesh, and non-blocking MPI messages
in order to overlap the communications across the network and the data transfer to and
from the device via PCIe with calculations on the GPU. We perform a number of numerical
tests to validate the single-precision CUDA and MPI implementation and assess its accu-
racy. We then analyze performance measurements and depending on how the problem
is mapped to the reference CPU cluster, we obtain a speedup of 20x or 12x.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Over the past several years, the number of non-graphical applications ported to graphics processing units (GPUs) has
grown at an increasingly fast pace, with a commensurate shift from the early challenges of implementing simple algorithms
to more demanding and realistic application domains. The research field of GPGPU (‘general purpose computation on GPUs’)
or ‘GPU computing’ has clearly been established, see for instance recent surveys on the topic [1–4]. Among the reasons that
explain why GPU computing is picking up momentum, the most important is that the use of GPUs often leads to speedup
factors between 5x and 50x on a single GPU versus a single CPU core, depending on the application. GPU peak performance
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continues to improve at a rate substantially higher than CPU performance. The new Fermi architecture [5] is one more step in
this direction.

1.1. GPU computing

In 1999 researchers began to explore the use of graphics hardware for non-graphics operations and applications. In these
early years, programming GPUs for such tasks was cumbersome because general operations had to be cast into graphics con-
structs. Nonetheless, the field of GPGPU emerged slowly, with more and more researchers conducting a number of ground-
breaking research work. We refer to the Ph.D. thesis by one of the authors [6] and a survey article by Owens et al. [7] for a
comprehensive overview. The situation changed dramatically in 2006, when NVIDIA released the initial version of CUDA. It
constitutes both a hardware architecture for throughput-oriented computing and an associated programming model [8–
10,4]. CUDA gives users a significant amount of control over a powerful streaming/SIMD manycore architecture. It is being
used to study a diverse set of compute-intensive physical problems, including fluid dynamics, computational chemistry and
molecular dynamics, medical imaging, astrophysics and geophysics, cf. Section 2 for an overview of related work in the con-
text of this article. Recently, OpenCL has been released as an open industry standard to facilitate portability and vendor-inde-
pendence, targeting both GPUs and multicore CPUs [11,4].

The main reason why GPUs outperform CPUs significantly on many workloads is that the architecture design favors the
throughput of many data-parallel tasks over the latency of single threads. This performance results chiefly through massive
hardware multithreading to cover latencies of off-chip memory accesses. In that regard, Fatahalian and Houston [12] provide
a comparison of the architecture of some of the latest GPUs, as well as potential future GPU and modern multicore processor
designs.

1.2. The spectral-element method and SPECFEM3D, our seismic wave propagation application

In the last decade, together with several colleagues, we developed SPECFEM3D, a software package that performs the
three-dimensional numerical simulation of seismic wave propagation resulting from earthquakes in the Earth or from active
seismic experiments in the oil industry, based on the spectral-element method (SEM, [13–16]). The SEM is similar to a high-
order finite-element method with high-degree polynomial basis functions. Based on the amount of published literature, it is
likely the second most used numerical technique to model seismic wave propagation in complex three-dimensional models,
after the finite-difference method.

The spectral-element method is extremely efficient to model seismic wave propagation because it is designed to combine
the good accuracy properties of pseudospectral techniques such as Legendre or Chebyshev methods with the geometrical
flexibility of classical low-order finite-element methods. In that regard, it can be seen as a close-to-optimal hp method ob-
tained by combining the advantages of h methods that use a dense mesh with the advantages of p methods that use high-
degree basis functions (see for instance [17–24], among many others). The use of Gauss–Lobatto–Legendre points (instead of
Gauss) leads to a diagonal mass matrix and therefore to a fully explicit algorithm, see Section 3. This in turn leads to a very
efficient implementation, in particular on parallel computers (see for instance [13,25,26,24]).

However, an important limitation of the classical SEM is that one needs to design a mesh of hexahedra, which in the case
of very complex geological models can be a difficult and time consuming process. If needed, one can turn to more complex
SEM implementations with a mixture of hexahedra, tetrahedra and pyramids (see for instance [27–30,24]), thus making
mesh generation easier in particular in the case of very complex models or geometries. Another option in such a case is
to turn to discontinuous Galerkin methods [31–37], which can also combine different types of mesh elements.

1.3. Article contribution

In order to study seismic wave propagation in the Earth at very high resolution (i.e., up to very high seismic frequencies)
the number of mesh elements required is very large. Typical runs require a few hundred processors and a few hours of
elapsed wall-clock time. Large simulations run on a few thousand processors, typically 2000–4000, and take two to five days
of elapsed wall-clock time to complete [13,38]. The largest calculation that we have performed ran on close to 150,000 pro-
cessor cores with a sustained performance level of 0.20 petaflops [25].

In this article, we propose to extend SPECFEM3D to a cluster of GPUs to further speed up calculations by more than an
order of magnitude, or alternatively, to perform much longer physical simulations at the same cost. The two key issues to
address are (1) the minimization of the serial components of the code to avoid the effects of Amdahl’s law and (2) the overlap
of MPI communications with calculations.

In finite-element applications, whether low or high order, contributions must be added between adjacent elements,
which leads to dependencies for degrees of freedom that require the summation of contributions from several elements. This
so-called ‘assembling’ process is the most difficult component of the SEM algorithm to handle in terms of obtaining an effi-
cient implementation. Several strategies can be used to implement it [24]. In a parallel application, atomic sums can be used
to handle these dependencies. Unfortunately, in general atomic operations can lead to reduced efficiency, and in addition on
current NVIDIA GPUs atomic operations can only be applied to integers. We will therefore use mesh coloring instead to de-
fine independent sets of mesh elements, ensuring total parallelism within each set. We will show that coloring, combined
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with non-blocking MPI to overlap communications between nodes with calculations on the GPU, leads to a speedup of 20x or
12x, depending on how speedup is defined. It is important to point out that most of the currently published speedups are on
a single GPU, while in this study we maintain the same performance level even on a large cluster of GPUs.

The outline of the article is as follows: in Section 2 we describe similar problems ported to the GPU by others. In Section 3
we discuss the serial algorithm implemented in SPECFEM3D, and in Section 4 we implement the algorithm using CUDA + M-
PI and discuss the optimizations that we considered to try to improve efficiency. In Section 5 we validate the results of our
GPU + MPI implementation with the reference C + MPI code we started from. Performance results are presented in Section 6.
We conclude in Section 7.
2. Related work

For a broad range of applications, depending on the algorithms used and the ease of parallelization, applications ported to
the GPU in the literature have achieved speedups that typically range from 3x to 50x with respect to calculations run on a
single CPU core. Of course, whether a specific speedup is considered impressive or not depends strongly on how well the
original CPU code was optimized, on the nature of the underlying computation, and also on how speedup is defined.

Dense BLAS level 3 operations, such as SGEMM and DGEMM, can be implemented to achieve close to peak arithmetic
throughput, using well-known tile-based techniques [39,40]. Large speedups are also achieved by finite-difference and fi-
nite-volume defined on structured grids (e.g. [41]). While these approaches are (mostly) limited in performance by off-chip
memory bandwidth due to their low arithmetic intensity, they benefit nonetheless from up to 160 GB/s memory bandwidth
on current devices, which is more than an order of magnitude higher than on high-end CPUs. Algorithms on unstructured
grids are in general harder to accelerate substantially, even though Bell and Garland [42] recently demonstrated substantial
speedups for various sparse matrix–vector multiply kernels and Corrigan et al. [43] presented a CFD solver on unstructured
grids. The same argument holds true for higher-order methods such as spectral methods or spectral finite-element methods,
which comprise many small dense operations. In both cases, performance tuning consists in balancing conflicting goals, tak-
ing into account kernel sizes, memory access patterns, sizes of small on-chip memories, multiprocessor occupancy, etc.
2.1. Geophysics and seismics on GPUs

In the area of numerical modeling of seismic wave propagation, Abdelkhalek [44], Micikevicius [41] and Abdelkhalek et al.
[45] have recently used GPU computing successfully to calculate seismic reverse time migration for the oil and gas industry.
They implemented a finite-difference method in the case of an acoustic medium with either constant or variable density run-
ning on a cluster of GPUs with MPI message passing. The simulation of forward seismic wave propagation or reverse time
migration led to speedups of 30x and 11x, respectively. Michéa and Komatitsch [46] have also used a finite-difference algo-
rithm on a single GPU to model forward seismic wave propagation in the case of a more complex elastic medium and ob-
tained a speedup between 20x and 60x.

Klöckner et al. [47] implemented a discontinuous Galerkin technique to solve Maxwell’s equations on a single GPU and
propagate electromagnetic waves. They obtained a speedup of 50x. As mentioned in the Introduction, discontinuous Galer-
kin methods have also been applied to the modeling of seismic waves on CPUs [31–37]; therefore it is likely that based on
the ideas of Klöckner et al. [47] to use such techniques on GPUs for Maxwell’s equations they could be adapted to the mod-
eling of seismic waves on GPUs.

Fast-multipole boundary-element methods have been applied to the propagation of seismic waves on a CPU (e.g., [48]).
On the other hand, Gumerov and Duraiswami [49] have ported a general fast-multipole method to a single GPU with a
speedup of 30–60x. Therefore, it is likely the fast-multipole boundary-element method of Chaillat et al. [48] could be imple-
mented efficiently on a GPU.

Raghuvanshi et al. [50] studied sound propagation in a church using a Discrete Cosine Transform on a GPU and an ana-
lytical solution.
2.2. Finite elements on GPUs

To date, there have been a few finite-element implementations in CUDA, such as the volumetric finite-element method to
support the interactive rates demanded by tissue cutting and suturing simulations during medical operations [51,52,7]. The
acceleration derives from a GPU implementation of a conjugate gradient solver. A time-domain finite-element has been
accelerated using OpenGL on a graphics card in [53]. The authors achieved a speedup of only two since the code is dominated
by dense vector/matrix operations, an inefficient operation in OpenGL due to the lack of shared memory.

To our knowledge, the first nonlinear finite-element code ported to the GPU is in the area of surgical simulation [54]. The
finite-element cells are tetrahedra with first-order interpolants and thus the overall solver is second-order accurate. The
authors achieve a speedup of 16x. The structure of the tetrahedra allows the storage of the force at the nodes of a tetrahedra
in four textures of a size equal to the number of global nodes. Once these forces are calculated, a pass through the global
nodes combined with indirect addressing allows the global forces to be calculated.
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2.3. GPU clusters

Currently, only a few articles have been published on the coding of applications across multiple GPUs using MPI for the
same application because the initial focus was on porting application to a single GPU and maximizing performance levels. A
second reason for the lack of such publications is the bottleneck that often results from communication of data between
GPUs, which must pass through the PCIe bus, the CPU and the interconnect. Thus, the measured speedup of an efficient
MPI-based parallel code could decrease when transformed into a multi-GPU implementation, according to Amdahl’s law.
The serial component of the code increases as a result of additional data transferred between the GPU and the CPU via
the PCIe bus, unless the algorithm is restructured to overlap this communication with computations on the GPU. Efficiency
also decreases (for a given serial component) when the time taken by the parallel component decreases, which is the case
when it is accelerated via efficient GPU implementation. Again, this effect can only be avoided by reducing the serial cost of
CPU to CPU and CPU to GPU communication to close to zero via overlap of computation and communication.

Fan et al. [55] described, for the first time, how an existing cluster (and an associated MPI-based distributed memory appli-
cation) could be improved significantly by adding GPUs, not for visualization, but for computation. To the best of our knowledge,
they were – at that time – the only group able to target realistic problem sizes, including very preliminary work on scalability
and load balancing of GPU-accelerated cluster computations. Their application was a Lattice-Boltzmann solver for fluid
flow in three space dimensions, using 15 million cells. As usual for Lattice-Boltzmann algorithms, single precision sufficed.

More recently, Göddeke et al. [56] used a 160-node GPU cluster and a code based on OpenGL to analyze the scalability,
price/performance, power consumption, and compute density of low-order finite-element based multigrid solvers for the
prototypical Poisson problem, and later extended their work to CUDA with applications from linearized elasticity and sta-
tionary laminar flow [57,58].

GPU clusters have started to appear on the Top500 list of the 500 fastest supercomputers in the world [59]. Taking advan-
tage of NVIDIA’s Tesla architecture, several researchers have adapted their code to GPU clusters: Phillips et al. [60] have
accelerated the ‘NAMD’ molecular dynamics program using the Charm++ parallel programming system and runtime library
to communicate asynchronous one-sided messages between compute nodes. Anderson et al. [61] have reported similar suc-
cess, also for molecular dynamics. Thibault and Senocak [62] used a Tesla machine (i.e., one compute node with four GPUs) to
implement a finite-difference technique to solve the Navier–Stokes equations. The four GPUs were used simultaneously but
message passing (MPI) was not required because they were installed on the same shared-memory compute node. Micikev-
icius [41] and Abdelkhalek et al. [45] used MPI calls between compute nodes equipped with GPUs to accelerate a finite-dif-
ference acoustic seismic wave propagation method. Phillips et al. [63] have accelerated an Euler solver on a GPU cluster, and
recently, Stuart and Owens [64] have started to map MPI to the multiprocessors (cores) within a single GPU.

Kindratenko et al. [65] addressed various issues that they solved related to building and managing large-scale GPU clus-
ters, such as health monitoring, data security, resource allocation and job scheduling. Fan et al. [66] and Strengert et al. [67]
developed flexible frameworks to program such GPU clusters.

2.4. Precision of GPU calculations

Current GPU hardware supports quasi IEEE-754 s23e8 single precision arithmetic. Double precision is already fully IEEE-
754-2008 compliant but, according to the specifications given by the vendors, theoretical peak performance is between eight
(NVIDIA Tesla 10 chip), five (AMD RV870 chip) and two (NVIDIA Tesla 20 chip) times slower than single precision. However,
unless the GPU code is dominated by calculation, the penalty due to double precision is far less in practice. Of course another
reason to consider single precision is reduced memory storage, by a factor of exactly two.

For some finite-element applications that involve the solution of large linear systems and thus suffer from ill-conditioned
system matrices, single precision is insufficient and mixed or emulated precision schemes are desirable to achieve accurate
results [68]. But our spectral-element code is sufficiently accurate in single precision, as demonstrated e.g. in Section 5 and in
[69–71] and the benchmarks therein.
3. Serial algorithm

We resort to the SEM to simulate numerically the propagation of seismic waves resulting from earthquakes in the Earth or
from active seismic acquisition experiments in the oil industry [69]. Another example is to simulate ultrasonic laboratory exper-
iments [72]. The SEM solves the variational form of the elastic wave equation in the time domain on a non-structured mesh of
elements, called spectral elements, in order to compute the displacement vector of any point of the medium under study.

We consider a linear anisotropic elastic rheology for a heterogeneous solid part of the Earth, and therefore the seismic
wave equation can be written in the strong, i.e., differential, form
q€u ¼ $ � rþ f;
r ¼ C : e;

e ¼ 1
2
½$uþ ð$uÞT �;

ð1Þ
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where u is the displacement vector, r the symmetric, second-order stress tensor, e the symmetric, second-order strain ten-
sor, C the fourth-order stiffness tensor, q the density, and f an external force representing the seismic source. A colon denotes
the double tensor contraction operator, a superscript T denotes the transpose, and a dot over a symbol indicates time differ-
entiation. The material parameters of the solid, C and q, can be spatially heterogeneous and are given quantities that define
the geological medium. Let us denote the physical domain of the model and its boundary by X and C, respectively. We can
rewrite the system (1) in a weak, i.e., variational, form by dotting it with an arbitrary test function w and integrating by parts
over the whole domain,
Z

X
qw � €udXþ

Z
X

$w : C : $udX ¼
Z

X
w � f dXþ

Z
C
ðr � n̂Þ �wdC: ð2Þ
The last term, i.e., the contour integral, vanishes because of the free surface boundary condition, i.e., the fact that the traction
vector s ¼ r � n̂ must be zero at the surface.

In a SEM, the physical domain is subdivided into mesh cells, within which quantities of interest are approximated by high
order interpolants. Therefore, as in any finite-element method, a first crucial step is to design a mesh by subdividing the
model volume X into a number of non-overlapping deformed hexahedral mesh elements Xe, e = 1, . . . ,ne, such that
X ¼ [ne

e¼1Xe. For better accuracy, the edges of the elements honor the topography of the model and its main internal discon-
tinuities, i.e., the geological layers and faults.

The mapping between Cartesian points x = (x,y,z) within a deformed, hexahedral element Xe and the reference cube may
be written in the form
xðnÞ ¼
Xna

a¼1

NaðnÞxa: ð3Þ
Points within the reference cube are denoted by the vector n = (n,g,f), where �1 6 n 6 1, �1 6 g 6 1 and �1 6 f 6 1. The
geometry of a given element is defined in terms of na = 27 control points xa located in its corners as well as the middle of
its edges, its faces, and in its center. The na shape functions Na are triple products of degree-2 Lagrange polynomials. The
three Lagrange polynomials of degree 2 with three control points n0 = �1, n1 = 0, and n2 = 1 are ‘2

0ðnÞ ¼ 1
2 nðn� 1Þ;

‘2
1ðnÞ ¼ 1� n2 and ‘2

2ðnÞ ¼ 1
2 nðnþ 1Þ.

A small volume dx dy dz within a given element is related to a volume dn dg df in the reference cube by dx dy dz = Jdn dg
df, where the Jacobian J of the mapping is given by J = j@(x,y,z)/@(n,g,f)j. The partial derivative matrix @x/@n needed for the
calculation of J is obtained by analytically differentiating the mapping (3). Partial derivatives of the shape functions Na are
defined in terms of Lagrange polynomials of degree 2 and their derivatives.

To represent the displacement field in an element, the SEM uses Lagrange polynomials of degree 4–10, typically, for the
interpolation of functions [73,22]. Komatitsch and Tromp [70] and De Basabe and Sen [22] find that choosing the degree n = 4
gives a good compromise between accuracy and time step duration. The n + 1 Lagrange polynomials of degree n are defined
in terms of n + 1 control points �1 6 na 6 1, a = 0, . . . ,n, by
‘n
aðnÞ ¼

ðn� n0Þ � � � ðn� na�1Þðn� naþ1Þ � � � ðn� nnÞ
ðna � n0Þ � � � ðna � na�1Þðna � naþ1Þ � � � ðna � nnÞ

: ð4Þ
The control points na are chosen to be the n + 1 Gauss–Lobatto–Legendre (GLL) points, which are the roots of ð1�
n2ÞP0nðnÞ ¼ 0, where P0n denotes the derivative of the Legendre polynomial of degree n [74, p. 61]. The reason for this choice
is that the combination of Lagrange interpolants with GLL quadrature greatly simplifies the algorithm because the mass ma-
trix becomes diagonal and therefore permits the use of fully explicit time schemes [69], which can be implemented effi-
ciently on large parallel machines (e.g. [25]).

Functions f that represent the physical unknowns on an element are interpolated in terms of triple products of Lagrange
polynomials of degree n as
f ðxðn;g; fÞÞ �
Xna ;nb ;nc

a;b;c¼0

f abc‘aðnÞ‘bðgÞ‘cðfÞ; ð5Þ
where fabc = f(x(na,gb,fc)) denotes the value of the function f at the GLL point x(na,gb,fc). The gradient of a function,
$f ¼

P3
i¼1x̂i@if , evaluated at the GLL point xðna0 ;gb0 ; fc0 Þ, can thus be written as
$f ðxðna0 ;gb0 ; fc0 ÞÞ �
X3

i¼1

x̂i ð@inÞa
0b0c0
Xna

a¼0

f ab0c0 ‘0aðna0 Þ þ ð@igÞa
0b0c0
Xnb

b¼0

f a0bc0 ‘0bðgb0 Þ þ ð@ifÞa
0b0c0
Xnc

c¼0

f a0b0c‘0cðfc0 Þ
" #

: ð6Þ
Here, x̂i; i ¼ 1;2;3, denote unit vectors in the directions of increasing x, y, and z, respectively, and @i, i = 1, 2, 3, denote partial
derivatives in those directions. We use a prime to denote derivatives of the Lagrange polynomials, as in ‘0a.

To solve the weak form of the equations of motion (2) requires numerical integrations over the elements. A GLL integra-
tion rule is used:
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Z
Xe

f ðxÞd3x ¼
Z 1

�1

Z 1

�1

Z 1

�1
f ðxðn;g; fÞÞ Jðn;g; fÞdndgdf �

Xna ;nb ;nc

a;b;c¼0

xaxbxcf abcJabc; ð7Þ
where Jabc = J(na,gb,fc), and xa > 0, for a = 0, . . . ,n, denote the weights associated with the GLL quadrature [74, p. 61]. There-
fore in our case each spectral element contains (n + 1)3 = 125 GLL points.

We can then rewrite the system (2) in matrix form as
M €U þ KU ¼ F; ð8Þ
where U is the displacement vector we want to compute, M is the diagonal mass matrix, K is the stiffness matrix, F is the
source term, and a double dot over a symbol denotes the second derivative with respect to time. For detailed expressions
of these matrices, see for instance [69]. Time integration of this system is usually performed based on a second-order cen-
tered finite-difference Newmark time scheme (e.g. [75,70]), although higher-order time schemes can be used if necessary
[76,77].

In the SEM algorithm, the serial time loop dominates the total cost because in almost all wave propagation applications a
large number of time steps is performed, typically between 5000 and 100,000. The preprocessing and postprocessing phases
are negligible in terms of cost and it is therefore sufficient to focus on the time loop to optimize a SEM code. In addition, all
the time steps have identical cost because the mesh is static and the algorithm is fully explicit, which greatly facilitates
optimization.
4. Implementation on a cluster of GPUs using CUDA and non-blocking MPI

4.1. CUDA programming model

For readers not familiar with details of CUDA, we briefly explain the programming model that supports the fine-grained
parallel architecture of NVIDIA GPUs. We refer to the CUDA documentation [8] and conference tutorials (http://gpgpu.org/
developer), for details.

CUDA-related publications (see Section 2), the official CUDA documentation, and various press releases vary dramatically
in terminology, especially when referring to the notion of a ‘core’ on GPUs. In this article, we follow the classification of
Fatahalian and Houston [12] and identify each multiprocessor with a ‘SIMD core’. The individual thread processors (‘stream-
ing processor cores’ or more recently ‘CUDA cores’ in NVIDIA nomenclature) within each multiprocessor share the instruc-
tion stream, and it is therefore justified to view them as arithmetic logic units (ALUs) or SIMD units.

CUDA ‘kernels’ are executed by partitioning the computation into a ‘grid’ of ‘thread blocks’. The atomic execution unit is
thus the thread block, which corresponds to a virtualized multiprocessor. The same physical multiprocessor can execute sev-
eral blocks, and the order in which blocks are assigned to multiprocessors is undefined. Threads within one block exchange
data via a small low-latency on-chip ‘shared memory’. Synchronization between blocks is only possible at the kernel scope,
i.e., there is always an implicit synchronization between kernel calls on dependent data (i.e., when some of the output of one
kernel is used as input to the next). It is not possible (except via slow atomic memory operations which are currently not
available for floating point data) to synchronize blocks within the execution of one grid.

All threads within a single block are executed in a SIMD fashion (NVIDIA refers to this as SIMT, single instruction multiple
threads), and the SIMD granularity is the ‘warp’. The threads within one block are assigned to consecutive warps of 32
threads. The ALUs within a multiprocessor execute an entire warp in lockstep, using a shared instruction pointer. Branch
divergence within a warp should therefore be avoided to prevent a potentially large performance hit since all threads within
one warp execute both sides of the branch and unused results are masked out.

Accesses to global memory can be ‘coalesced’ automatically by the hardware into, at best, a single large, efficient trans-
action per ‘half-warp’ of 16 threads. To achieve that, there are a number of restrictions on the memory access pattern and on
data alignment. On the Tesla GPUs we employ in this article, global memory can be conceptually organized into a sequence
of memory-aligned 128-byte segments (for single precision data, which we use). The number of memory transactions per-
formed for a half-warp is equal to the number of 128-byte segments touched by the addresses used by that half-warp. Only
64 bytes are retrieved from memory if all the addresses of the half-warp lie in the upper or lower half of a memory segment,
with a doubling of the bandwidth. Fully coalesced memory requests and thus maximum memory performance are achieved
if all addresses within a half-warp touch precisely the upper or lower half of a single segment (see Bell and Garland [42] for
an example based on strided memory accesses). The precise conditions for maximum throughput are a function of the graph-
ics card, the precision, and the compute capability of the card.

Each multiprocessor can keep 1024 threads in flight simultaneously, by switching to the next available warp when the
currently executed one stalls, e.g., due to memory requests. These context switches are performed in hardware and are thus
essentially for free. The actual number of concurrent thread blocks is determined by the amount of resources used, in par-
ticular registers and shared memory (referred to as ‘multiprocessor occupancy’). This approach maximizes the utilization of
the ALUs, minimizes the effective latency of off-chip memory requests, and thus maximizes the overall throughput. Table 1
summarizes some of the above for easier reference.

http://gpgpu.org/developer
http://gpgpu.org/developer


Table 1
Glossary of some terms used in CUDA programming and in this article. For more details the reader is referred to the CUDA documentation [8] and conference
tutorials (http://gpgpu.org/developer).

Term Explanation

Host The CPU and the interconnect
Device The GPU
Kernel A function executed in parallel on the device
Thread block A set of threads with common access to a shared memory area – all the threads within a block can be synchronized
Grid A set of thread blocks – a kernel is executed on a grid of thread blocks
Warp A group of 32 threads executed concurrently on a multiprocessor of the GPU
Occupancy The ratio of the actual number of active warps on a multiprocessor to the maximum number of active warps allowed,

essentially a measure of latency hiding
Global memory Uncached off-chip DRAM memory
Shared memory High-performance on-chip register memory, limited to 16 kB per multiprocessor on the hardware we use
Constant memory A read-only region of device memory with faster access times and a cache mechanism
Coalesced memory

accesses
Simultaneous GPU global memory accesses coalesced into a single contiguous, aligned memory access at the scope of a half-
warp

Fig. 1. (Left) Mesh of a region of the Earth centered on the North pole, showing Greenland and part of North America. The mesh is unstructured, as can also
been seen on the closeups of Figs. 3 and 6. (Right) The mesh is decomposed into 64 slices in order to run on 64 GPUs. The decomposition is topologically
regular, i.e., all the mesh slices and the cut planes have the same number of elements and points, and the cut planes all have the same structure. In reality
the mesh is filled with 3D elements, but only the cut planes have been drawn for clarity.

7698 D. Komatitsch et al. / Journal of Computational Physics 229 (2010) 7692–7714
4.2. Meshing and partitioning into subdomains

In a preprocessing step on the CPU, we mesh the region of the Earth in which the earthquake occurred (Fig. 1, left). Next,
we split the mesh into slices, one per computing unit/MPI process (one per processor core on a CPU cluster and one per GPU
on a GPU cluster) (Fig. 1, right). The mesh in each slice is unstructured in the finite-element sense, i.e., it has a non regular
topology and the valence of a point of the mesh can be greater than eight, which is the maximum value in a regular mesh of
hexahedra. Equivalently we can say that mesh elements can have any number of neighbors, and that this number varies
across a mesh slice.

However, the whole mesh is block-structured, i.e., each mesh slice is composed of an unstructured mesh, but all the mesh
slices are topologically identical. In other words, the whole mesh is composed of a regular pattern of identical unstructured
slices. Therefore when we split the mesh into slices the decomposition is topologically a regular grid and all the mesh slices
and the cut planes have the same number of elements and points. This implies that perfect load balancing is ensured by def-
inition between all the MPI tasks.

4.3. Assembling common points

The Lagrange interpolants, defined on [�1,1], are built from the Gauss–Lobatto–Legendre points, which include the
boundary points �1 and +1 in each coordinate direction. Polynomial basis functions of degree n also include (n � 1) interior
points. In 3D this holds true in the three spatial directions. Therefore (n � 1)3, points are interior points not shared with
neighboring elements in the mesh, and (n + 1)3 � (n � 1)3 may be shared with neighboring elements through a common face,
edge or corner, as illustrated in Fig. 2. One can thus view the mesh either as a set of elements, each with (n + 1)3 points, or as
a set of global grid points with all the multiples, i.e., the common points, counted only once. Thus, some bookkeeping is
needed to store an array that describes the mapping between a locally numbered system for all the elements and their asso-
ciated grid points in a global numbering system.

When computing elastic mechanical forces with a SEM, the contributions to the force vector are calculated locally and
independently inside each element and summed at the shared points. This is called the ‘assembly process’ in finite-element
algorithms. In a parallel code, whether on CPUs or on GPUs, this operation is the most critical one and has the largest impact

http://gpgpu.org/developer
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Fig. 2. (Left) In a SEM mesh in 2D, elements can share an edge or a corner. (Right) In 3D, elements can share points on a face, an edge or a corner. The GLL
interpolation and quadrature points inside each element are non-evenly spaced but have been drawn evenly-spaced for clarity.
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on performance. We use below an efficient approach to the assembly process based on mesh coloring. Once assembled, the
global force vector is scaled by the inverse of the assembled mass matrix, which is diagonal and therefore stored as a vector
(see Section 3). This last step is straightforward and has negligible impact on performance.
4.4. Overlapping computation and communication

The elements that compose the mesh slices of Fig. 1 (right) are in contact through a common face, edge or point. To allow
for overlap of communication between cluster nodes with calculations on the GPUs, we create inside each slice a list of all
the elements that are in contact with any other mesh slice through a common face, edge or point. Members of this list are
called ‘outer’ elements; all other elements are called ‘inner’ elements (Fig. 3). We compute the outer elements first, as it is
done classically (cf. for instance Danielson and Namburu [78], Martin et al. [26], Micikevicius [41], Michéa and Komatitsch
[46]). Once the computation of the outer elements is complete, we can fill the MPI buffers and issue a non-blocking MPI call,
which initiates the communication and returns immediately. While the MPI messages are traveling across the network, we
compute the inner elements. Achieving effective overlap requires that the ratio of the number of inner to outer elements be
sufficiently large, which is the case for large enough mesh slices. Under these conditions, the MPI data transfer will statis-
tically likely complete before the completion of the computation of the inner elements. We note that to achieve effective
Fig. 3. Outer (red) and inner (other colors) elements for part of the mesh of Fig. 1. Elements in red have at least one point in common with an element from
another slice and must therefore be computed first, before initiating the non-blocking MPI communications. The picture also shows that the mesh is
unstructured because we purposely increase the size of the elements with depth based on a ‘mesh doubling brick’. This is done because seismic velocities
and therefore seismic wavelengths increase with depth in the Earth. Therefore, larger elements are sufficient to sample them; they lead to a reduction in the
computational cost. Here for clarity only the cut planes that define the mesh slices have been drawn; but in reality the mesh is filled (see Fig. 1, left, and
Fig. 6). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)



7700 D. Komatitsch et al. / Journal of Computational Physics 229 (2010) 7692–7714
overlap on a cluster of GPUs, this ratio must be larger than what is required for a classical cluster of CPUs, since calculation of
the inner elements is over an order of magnitude faster when executed on a GPU (see Section 6).

4.5. System design

Data transfers between CPU and GPU decrease the efficiency of an implementation because of the limited bandwidth of
the PCIe bus. To mitigate this potential bottleneck, we allocate and load all the local and global arrays on the GPU prior to the
start of the time loop, which is appropriate because the operations performed are identical at each iteration. As a conse-
quence, the total problem size is limited by the amount of memory available on each GPU, i.e., 4 GB on the Tesla S1070 mod-
els used in this study. For mesh slices too large to fit on 4 GB per GPU, and under the assumption that there is more than 4 GB
of memory per MPI task on the CPU nodes, another alternative is an implementation that follows the second algorithm pre-
sented in [71], in which local arrays are stored on the CPU and sent in batches to the GPU to be processed. The disadvantage
of this approach is the large number of data transferred back and forth between CPU and GPU, with a large impact on per-
formance and increased algorithmic complexity.

The high 25x speedup achieved on a single GPU versus a calculation running on a single processor core [71] diminishes
some of the advantages of designing a mixed CPU/GPU system in which some fraction of the calculations would execute on
the CPU. Aside from a factor 25 slowdown, additional costs would arise from significant data transfers back and forth be-
tween the CPU and the GPU, for instance to assemble the mechanical forces. Let us estimate, under the best possible con-
ditions, the expected additional speedup possible by harnessing the power of the multiple cores to help update additional
elements. Thus, we assume that (1) there are no communication costs between GPU and CPU or between cores, and (2)
there is perfect load balancing, i.e., cores and GPUs never wait on each other. We further assume that the acceleration
of a single GPU over a single CPU, to compute a single element C is A, and that the wall clock time on a dedicated machine
to compute a single element is C, and that there are E elements on the GPU. With the assumption of load balancing, each
CPU core holds E/A elements, and the time to compute the problem on n CPU cores and m GPUs is CE. On the other hand,
the time to update all the elements on a single GPU is: C(m + n/A)E. Thus, the best case acceleration is m + n/A. Taking the
parameters that correspond to our architectural configuration, there is 1 GPU for every two CPU cores. Therefore, taking
A = 25, the possible acceleration beyond that provided by a single GPU is 8%. Achieving a factor of two would require
25 cores. Note that in reality, communication costs, PCIe bus sharing, and imperfect load-balancing will decrease the com-
puted gain in performance. The additional complexities led us to purposely use only one CPU core per GPU (instead of a
maximum of 2) and perform on it only the parts of the algorithm that must remain on the CPU, i.e., the handling and pro-
cessing of the MPI buffers.

4.6. CUDA implementation

The computations performed during each iteration of the SEM consist of three steps. The first step performs a partial up-
date of the global displacement vector u and velocity vector v ¼ _u in the Newmark time scheme at all the grid points, based
on the previously computed acceleration vector a ¼ €u:
unew ¼ uold þ Dtv þ Dt
2

a ð9Þ
and
vnew ¼ vold þ Dt
2

a; ð10Þ
where Dt is the time step.
The second step is by far the most complex. It consists mostly of local matrix products inside each element to compute its

contribution to the stiffness matrix term KU of Eq. (8) according to Eq. (2). To do so, the global displacement vector
is first copied into each element using the local-to-global mesh numbering mapping defined above. Then, matrix products
must be performed between a derivative matrix, whose components are the derivatives of the Lagrange polynomials at
the GLL points ‘0aðna0 Þ as in Eq. (6), and the displacement u in 2D cut planes along the three local directions (i, j,k) of an
element.

The goal of this step is to compute the gradient of the displacement vector at the local level. Subsequently the numerical
integrations of Eq. (7) are performed. They involve the GLL integration weights xa and the discrete Jacobian at the GLL
points, J(na,gb,fc). To summarize, we compute
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where
Fik ¼
X3

j¼1

rij @jnk ð12Þ
and Frsm
ik ¼ Fikðxðnr;gs; fmÞÞ denotes the value of Fik at the GLL point x(nr,gs,fm). For brevity, we have introduced index nota-

tion ni, i = 1, 2, 3, where n1 = n, n2 = g, and n3 = f. In index notation, the elements of the Jacobian matrix @n/@x may be written
as @inj. The value of the stress tensor r at the GLL points is determined by
r xðna;gb; fcÞ; t
� �

¼ C xðna;gb; fcÞ
� �

: $uðxðna;gb; fcÞ; tÞ: ð13Þ
This calculation requires knowledge of the gradient $u of the displacement at these points, which, using (Eq. (6)), is
@iujðxðna;gb; fcÞ; tÞ ¼
Xnr

r¼0

urbc
j ðtÞ‘

0
rðnaÞ

" #
@inðna;gb; fcÞ þ

Xnr

r¼0

uarc
j ðtÞ‘

0
rðgbÞ

" #
@igðna;gb; fcÞ

þ
Xnr

r¼0

uabr
j ðtÞ‘

0
rðfcÞ

" #
@ifðna;gb; fcÞ: ð14Þ
Finally at the end of this second main calculation the computed local values are summed (‘assembled’) at global mesh points
to compute the acceleration vector a using the local-to-global mesh numbering mapping.

The third main calculation performs the same partial update of the global velocity vector in the Newmark time scheme at
all the grid points as in Eq. (10), based on the previously computed acceleration vector. It cannot be merged with it because
the acceleration vector is modified in the second main calculation.

Fig. 4 summarizes the structure of a single time step; this structure contains no significant serial components. Therefore
Amdahl’s law, which says that any large serial part will drastically reduce the potential speedup of any parallel application,
does not have a significant impact in our SEM application.

Implementation of the first and third kernels Each of the three main calculations is implemented as an individual CUDA ker-
nel. The first and third kernels are not detailed here because they are straightforward: they consist of a simple local calcu-
lation at all the global grid points, without dependencies. These calculations are trivially parallel and reach 100% occupancy
in CUDA. As one element contains (n + 1)3 = 125 grid points we use zero padding to create thread blocks of 128 points, i.e., we
use one block per spectral element because in CUDA blocks should contain an integral multiple of 32-thread warps for max-
imum performance. This improves performance by achieving automatic memory alignment on multiples of 16. The threads
of a half-warp load adjacent elements of a float array and access to global memory is thus perfectly coalesced, i.e., optimal.
This advantage outweighs by far wasting 128/125 = 2.4% of the memory.

Implementation of the second kernel The second kernel is illustrated in Fig. 5 and is much more complex. A key issue is
how to properly handle the summation of material elastic forces computed in each element. As already noted, some of
these values get summed at shared grid points and therefore in principle the sum should be atomic. The idea is to en-
sure that different warps never update the same shared location, which would lead to incorrect results. Current NVIDIA
hardware and CUDA support atomic operations, but only for integers, not floating point data. In addition, in
general atomic memory operations can be inefficient because memory accesses are serialized. We therefore prefer to
create subsets of disjoint mesh elements based on mesh coloring [79–82,71] as shown in Fig. 6. In a coloring strategy,
elements of different colors have no common grid points, and the update of elements in a given set can thus proceed
without atomic locking. Adding an outer serial loop over the mesh colors, each color is handled through a call to the
second CUDA kernel, as shown in the flowchart of a single time step in Fig. 4. Mesh coloring is done once in a prepro-
cessing stage when we create the mesh on the CPU nodes (see Section 4.2). It is therefore not necessary to port this
preprocessing step to CUDA. For the same reason, its impact on the numerical cost of a sufficiently long SEM simulation
is small.

We use the same zero padding strategy and mapping of each element to one thread block of 128 threads with one thread
per grid point as for kernels one and three. The derivative matrices used in kernel 2 have size (n + 1) � (n + 1), i.e., 5 � 5. We
inline these small matrix products manually, and store them in constant memory to take advantage of its faster access times
and cache mechanism. All threads of a half-warp can access the same constant in one cycle.

Kernel 2 dominates the computational cost and is memory bound because of the small size of the matrices involved: it
performs a relatively large number of memory accesses compared to a relatively small number of calculations. Further-
more, we have to employ indirect local-to-global addressing, which is intrinsically related to the unstructured nature
of the mesh and leads to some uncoalesced memory access patterns. On the GT200 architecture, we nonetheless see very
good throughput of this kernel. On older hardware (G8x and G9x chips) the impact on performance was much more se-
vere [71].

We also group the copying of data in and out of the MPI buffers to minimize the bottleneck imposed by the PCIe bus: we
collect all the data to be transferred to the CPU into a single buffer to execute one large PCIe transfer because a small number
of large transfers is better than many smaller transfers.



Fig. 4. Implementation of one time step of the main serial time loop of our spectral-element method implemented in CUDA + MPI on a GPU cluster. The
white boxes are executed on the CPU, while the filled yellow boxes are launched as CUDA kernels on the GPU. Some boxes correspond to transfers between
the CPU and the GPU, or between the GPU and the CPU, in order to copy and process the MPI buffers.
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5. Numerical validation

5.1. Comparison to a reference solution in C + MPI

We first need to make sure that our CUDA + non-blocking MPI implementation works fine. Let us therefore perform a val-
idation test in which we compare the results given by the new code with the existing single-precision C + MPI version of the
code for a CPU cluster, which has been used for many years and is fully validated (e.g. [69,70]). We take the mesh structure of
Fig. 1 (left) composed of 64 mesh slices and put a vertical force source at latitude 42.17�, longitude �50.78� and a depth of
1837.8 km. The model of the structure of the Earth is the elastic isotropic version of the PREM model without the ocean layer
[83], which is a standard reference Earth model widely used in the geophysical community. The time variation of the source
is the second derivative of a Gaussian with a dominant period of 50 s, centered on time t = 60 s. The mesh is composed of
256 � 256 spectral elements at the surface and contains a total of 655,360 spectral elements and 43,666,752 independent
grid points. We use a time step of 0.20 s to honor the CFL stability condition [70,22,77] and propagate the waves for a total
of 10,000 time step, i.e., 2000 s. We record the time variation (due to the propagation of seismic waves across the mesh) of
the three components of the displacement vector (a so-called ‘seismogram’) at latitude 37.42�, longitude 139.22� and a depth
of 22.78 km.



Fig. 5. Flowchart of kernel 2, which is the most complex kernel. It implements the global-to-local copy of the displacement vector, then matrix
multiplications between the local displacement and some derivative matrix, then multiplications with GLL numerical integration coefficients, and then a
local-to-global summation at global mesh points, some of which being shared between adjacent mesh elements of a different color.
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Fig. 7 shows that the three seismograms are indistinguishable at the scale of the figure and that the difference is very
small. This difference is due to the fact that operations are performed in a different order on a GPU and on a CPU and thus
cumulative roundoff is slightly different, keeping in mind that floating point arithmetic is not associative.
5.2. Application to a real earthquake in Bolivia

Let us now study a real earthquake of magnitude Mw = 8.2 that occurred in Bolivia on June 9, 1994, at a depth of 647 km.
The real data recorded near the epicenter during the event by the so-called ‘BANJO’ array of seismic recording stations have
been analyzed for instance by Jiao et al. [84]. The earthquake was so large that a permanent displacement (called a ‘static
offset’) of 6–7 mm was observed in a region several hundred kilometers wide, i.e., the surface of the Earth was permanently
tilted and the displacement seismograms do not go back to zero. This was confirmed by Ekström [85] who used a quasi-ana-
lytical calculation based on the spherical harmonics of the Earth (the so-called ‘normal-mode summation technique’) for a 1-
D spherically-symmetric Earth model and also found this static offset. Let us therefore see if our SEM calculation in CU-
DA + MPI can calculate it accurately as well.

The mesh and all the numerical parameters are unchanged compared to Fig. 7, except that the mesh is centered on Bo-
livia. The simulation is accurate for all seismic periods greater than about 15 s (i.e., all seismic frequencies below 1/15 Hz). In
Fig. 8 we show the SEM seismograms at seismic recording station ‘ST04’ of the BANJO array in Bolivia, which is located at a



Fig. 6. Mesh coloring allows us to create subsets of elements (in each color) that do not share mesh points. Therefore, each of these subsets can be handled
efficiently on a GPU without resorting to an atomic operation when summing values at the mesh points. Because we process the ‘outer’ and the ‘inner’
elements of Fig. 3 in two separate steps, we color them separately.
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distance of 5� south of the epicenter. Superimposed we show the independent quasi-analytical solution computed based on
normal-mode summation. The agreement is excellent, which further validates our CUDA + MPI code. The strong pressure (P)
and shear (S) wave arrivals are correctly reproduced and the 6.6 mm offset on the vertical component and 7.3mm on the
North–South component are computed accurately.

6. Performance analysis and speedup obtained

The machine we use is a cluster of 48 Teslas S1070 at CCRT/CEA/GENCI in Bruyères-le-Châtel, France; each Tesla S1070
has four GT200 GPUs and two PCI Express-2 buses (i.e., two GPUs share a PCI Express-2 bus). The GT200 cards have 4 GB of
memory, and the memory bandwidth is 102 GB/s with a memory bus width of 512 bits. The Teslas are connected to BULL
Novascale R422 E1 nodes with two quad-core Intel Xeon X5570 Nehalem processors operating at 2.93 GHz. Each node
has 24 GB of RAM and runs Linux kernel 2.6.18. The network is a non-blocking, symmetric, full duplex Voltaire InfiniBand
double data rate (DDR) organized as a fat tree. Fig. 9 illustrates the cluster configuration.

With today’s plethora of architectures, GPUs and CPUs, both single and multicores, the notion of code acceleration be-
comes increasing nebulous. There are different approaches that could be used to define speedup. Compare a single GPU
implementation against a single CPU implementation is one approach. But is the CPU implementation efficient? How fast
is the CPU? Both these questions are difficult to answer. If one must code an efficient CPU implementation for every GPU
code, the time lost becomes hard to justify. What if a CPU is multi-core? Should one measure speedup relative to a baseline
multi-core implementation? The combinatorics quickly becomes daunting. When running on multiple GPUs, the situation is
even more complex. Should one compare a parallel GPU implementation against a parallel CPU implementation? Some GPU
algorithms do not have a CPU counterpart. We believe that like CPU frequency, the notion of speedup requires a careful eval-
uation if it is used at all. For example, proper evidence should be presented that the CPU code is sufficiently optimized. After
all, the GPU code was probably constructed through careful tuning to ensure the best use of resources. Unless the same is
done on the CPU, the measured speedup will probably be artificially high. A thorough description of hardware, the compiler
options, and algorithmic choices is also essential. Finally, the investment of manpower, power consumption, and other indi-
rect costs can also become non-negligible when seeking to present new implementations in the best light, and should, when
possible, be taken into account.

For this study, we use CUDA version 2.3 and the following two compilers and compilation options:
Intel icc version 11.0:
 -O3 -x SSE4.2 -ftz -funroll-loops -unroll5

nvcc version CUDA_v2_3:
 -arch sm_13 -O3
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Fig. 8. Numerical time variation of the components of the displacement vector at station ‘ST04’ of the ‘BANJO’ seismic recording array in Bolivia during the
magnitude 8.2 earthquake of June 9, 1994. The earthquake occurred at a depth of 647 km. Left: North–South component, Right: vertical component. The red
line shows the spectral-element CUDA + MPI solution and the blue line shows the independent quasi-analytical reference solution obtained based on
normal-mode summation. The agreement is excellent, which further validates our CUDA + MPI implementation. The pressure (P) and shear (S) waves are
accurately computed and the large 6.6 mm and 7.3 mm static offsets observed on the vertical and North–South components, respectively, are correctly
reproduced. Note that the quasi-analytical reference solution obtained by normal-mode summation contains a small amount of non-causal numerical noise
(see e.g. the small oscillations right after t = 0 on the North component, while the first wave arrives around 100 s). Therefore, the small discrepancies are
probably due to the reference solution.
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Fig. 7. Comparison of the time variation (due to the propagation of seismic waves across the mesh) of the three components of the displacement vector
(upper left: X component; upper right: Y component; bottom: Z component) at a given point of the mesh due to the presence of a vertical force source
elsewhere in the mesh, for the single-precision CUDA + MPI code (red line) and the reference existing single-precision C + MPI code running on the CPUs
(blue line). The two curves are indistinguishable at the scale of the figure. The absolute difference (shown amplified by a factor of 3000, green line) is very
small, which validates our CUDA + MPI implementation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 9. Description of the cluster of 48 Teslas S1070 used in this study. Each Tesla S1070 has four GT200 GPUs and two PCI Express-2 buses (i.e., two GPUs
share a PCI Express-2 bus). The GT200 cards have 4 GB of memory, and the memory bandwidth is 102 GB/s with a memory bus width of 512 bit. The Teslas
are connected to BULL Novascale R422 E1 nodes with two quad-core Intel Xeon X5570 Nehalem processors operating at 2.93 GHz. Each node has 24 GB of
RAM. The network is a non-blocking, symmetric, full duplex Voltaire InfiniBand double data rate (DDR) organized as a fat tree.
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We chose Intel icc over GNU gcc because it turns out that the former leads to significantly faster code for our application;
note that this implies that measured GPU speedup would be significantly higher if using GNU gcc, which again shows how
sensitive speedup values are to several factors, and thus how cautiously they should be interpreted. Floating point trapping is
turned off (using -ftz) because underflow trapping occurs very often in the initial time steps of many seismic propagation
algorithms, which can lead to severe slowdown.

In the case presented in this article, the CPU reference code to compute speedup is already heavily optimized [13,38]
using the ParaVer performance analysis tool [86], in particular to minimize cache misses. The current code is based on a par-
allel version that won the Gordon Bell supercomputing award on the Japanese Earth Simulator—a NEC SX machine—at the
SuperComputing’2003 conference [13] and that was among the six finalists again at the SuperComputing’2008 conference
for a calculation first on 62,000 processor cores and later on close to 150,000 processor cores with a sustained performance
level of 0.20 petaflops [25].

Our original seismic wave propagation application being written in Fortran95 + MPI, we rewrote the computation kernel
of the original code in C + MPI to facilitate interfacing with CUDA, which is currently easier from C. In a previous study [71]
we found that this only has a small impact on performance, slowing down the application by about 12%.

Each mesh slice contains 446,080 spectral elements; each spectral element contains 125 grid points, many of which are
shared with neighbors as explained in previous sections and in Fig. 2. Each of the 192 mesh slices contains 29,606,949 unique
grid points (i.e., 88,820,847 degrees of freedom since we solve for the three components of the acceleration vector). The total
number of spectral elements in the mesh is 85.6 million, the total number of unique grid points is 5.684 billion, and at each
time step we thus compute a total of 17 billion degrees of freedom.

Out of the 446,080 spectral elements of each mesh slice, 122,068 are ‘outer’ elements, i.e., elements in contact with MPI
cut planes through at least one mesh point (see Fig. 3) and 446,080–122,068 = 324,012 elements are ‘inner’ elements. Thus
the inner and outer elements represent 27.4% and 72.6% of the total number of elements, respectively. Because we exchange
2D cut planes, composed of only one face, one edge or one point of each element of the cut plane, the amount of data sent to
other GPUs via MPI is relatively small compared to the 3D volume of each mesh slice. In practice we need to exchange values
for 3,788,532 cut plane points out of the 29,606,949 grid points of each mesh slice, i.e., 12.8%, which corresponds to 43 MB
because for each of these points we need to transfer the three components of the acceleration vector, i.e., three floats. Thus,
the transfer to the CPU and from there to other GPUs can be effectively overlapped with the computation of the 3D volume of
the inner elements.
6.1. Performance of the CUDA + MPI code

Let us first analyze weak scaling, i.e., how performance varies when the number of calculations to perform on each node is
kept constant and the number of nodes is increased. For wave propagation applications it is often not very interesting to
study strong scaling, i.e., how performance varies when the number of calculations to perform on each node is decreased
linearly, because people running such large-scale HPC calculations are very often interested in using the full capacity of each
node of the machine, i.e., typically around 90% of its memory capacity. We therefore designed a mesh that consumes 3.6 GB
out of a maximum of 4 GB available on each GPU. The 192 mesh slices thus require a total of 700 GB of GPU memory.

All the measurements correspond to the duration (i.e., elapsed time) of 1000 time steps, keeping in mind that at each iter-
ation the spectral-element algorithm consists of the exact same numerical operations. To get accurate measurements, not
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subject to outside interference, the nodes that participate in a particular run are not shared with other users, and each run is
executed three times to ensure that the timings are reliable, and to determine any fluctuations.

In this section we perform the four types of tests described in Fig. 10. Let us start with Fig. 10(a), in which we perform
simulations using between 4 and 192 GPUs (i.e., the whole machine), by steps of four GPUs, and each PCIe-2 bus is shared by
two GPUs. The average elapsed wall-clock time per time step of the SEM algorithm is shown in Fig. 11. As expected from our
overlap of communications with computations, the weak scaling obtained is very good; communication is essentially free.
There are small fluctuations, on the order of 2%, both between values obtained for a different number of GPUs and between
repetitions of the same run.

In Fig. 12 we again show the average elapsed time per time step of the SEM algorithm, but for simulations that use only
one GPU per half node, thus in which the PCIe bus is not shared (Fig. 10(b)). Consequently we can only use a maximum of 96
GPUs instead of 192 even when we use all the nodes of the machine. Weak scaling is now perfect, there are no fluctuations
between values obtained for a different number of GPUs or between the three occurrences of the same run. This conclusively
demonstrates that the small fluctuations come from sharing the PCIe bus.

To get a more quantitative estimate of the effect of PCIe bus sharing, we overlay the results of Figs. 11 and 12 in Fig. 13,
with an expanded vertical scale, which shows that these fluctuations are small and that therefore PCIe sharing is not an issue
in practice, at least in this implementation. A rough estimate of the maximum relative fluctuation amplitude between the
two cases (at 60 GPUs) is 0.334 s/0.325 s = 1.028 = 2.8%.

We can also analyze the degree to which communications are overlapped by calculations. Fig. 14 compares four sets of
measurements (with three runs in each case, to make sure the measurements are reliable): the two curves of Fig. 13, a cal-
culation in which we create, copy and process the MPI buffers normally but replace the MPI send/receives by simply setting
the buffers to zero (Fig. 10(c)), and a calculation in which we completely turn off both the MPI communications and the cre-
ation, copying and processing of the MPI buffers (Fig. 10(d)). These last two calculations produce incorrect seismic wave
propagation results due to incorrect summation of the different mesh slices; however they use an identical number of oper-
ations inside each mesh slice and can therefore be used as a comparison point to estimate the cost of creating and processing
the buffers and also of receiving them, i.e., the time spent in MPI_WAIT () to ensure that all the messages have been received.
Note that copying the MPI buffers involves PCIe bus transfers from each GPU to the host, as explained in Section 4.6.

A comparison between the red curves (full calculation for the real problem with sharing of the PCIe bus) and the blue
curve (modified calculation in which the MPI buffers are built and thus the communication costs between GPU and CPU
are taken into account but the MPI send/receives are disabled) shows a good estimate of the time spent waiting for commu-
nications, i.e., is a good illustration of how/if we effectively overlap communications with calculations. In several cases (e.g.,
for some runs around 96 or 100 GPUs) the values are very close; communications are almost totally overlapped. In the worst
cases we can estimate (for instance around 120 GPUs) that the difference is of the order of 0.335 s/ 0.326 s = 1.028 = 2.8%:
Communications are still very well overlapped with computations.
Fig. 10. Description of the four types of tests performed on the cluster of 48 T S1070 depicted in Fig. 9.
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We can confirm this by estimating the cost of running the code without overlap between communication and computa-
tion using blocked MPI send and receives. In Fig. 15, in which we compare the GPU weak scaling results of Fig. 11 with the
same simulations performed using blocking MPI, we see that the average value of elapsed time per time step is 0.333 s in the
case of non blocking MPI and 0.388 s in the case of blocking MPI, i.e., a difference of (0.388–0.333) s/0.333 s = 0.165 = 16.5%.
This shows that overlapping is efficient in our implementation of the spectral-element algorithm and that using a simpler
blocking implementation would have resulted in a loss of performance. More importantly, previous experiments have shown
blocking communications to be untenable because of bottlenecks once the number of processors exceeds on the order of
2000 [38], resulting in very poor scaling above that limit. Although the number of GPUs in this article is far below this thresh-
old, we anticipate clusters with several thousand GPUs in the near future and thus using blocking MPI is not a valid option.

Comparing the green curves (full calculation for the real problem without sharing of the PCIe bus) and the magenta curves
(modified calculation in which the MPI buffers are not built, nothing gets copied through the PCIe bus, and MPI is completely
turned off) gives an estimate of the total cost of running the problem on a cluster, i.e., having cut the mesh into pieces, which
implies building MPI buffers, sending/receiving them with MPI, and processing them once they are received. We measure
that this total cost is of the order of 0.325 s/0.291 s = 1.117 = 11.7%. We emphasize that this cost does not affect the efficiency
and scalability of the code, as it is not serialized.
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Fig. 16 shows some reference CPU weak scaling results, using four cores per node out of the eight cores that are available,
for the same mesh as for the GPU tests, i.e., with 3.6 GB on each core, or 14.4 GB per node, out of a maximum of 24 GB per
node. To use the resources in a balanced way, we assign two MPI processes to each of the two quad-core Nehalem processors
on each node. We pin processes to cores using process binding to avoid process migration by the Linux kernel during the
runs. Again, each run is repeated three times. We overlay reference CPU weak scaling results using all eight cores per node.
To do this, we cut each mesh slice in two but use twice as many MPI processes, thus using 1.8 GB of memory per core instead
of 3.6 GB but keeping the same total mesh size. On average the weak scaling is excellent because communications are almost
completely overlapped by calculations and thus hidden, as in the GPU cases discussed above. We observe small fluctuations,
with a maximum amplitude of about 2%, that are larger when using the whole 8 cores per node and that are probably due to
resource sharing between processes, to NUMA effects, to interconnect contention or to memory bus contention. The average
elapsed time per time step is 6.61 s when we use four cores and 4.08 s when we use eight cores. Therefore by using eight
cores instead of four, as expected due to resource sharing, we only gain a factor of 6.61 s/4.08 s = 1.62, significantly lower
than the ideal factor of 2.

Fig. 17 shows GPU/CPU speedup, computed as the ratio of the average timings of the reference CPU runs from Fig. 16 and
the average timings of the GPU runs of Fig. 11 (with MPI + PCIe bus sharing). The average speedup of GPU runs versus CPU
runs on four cores per node is 19.83, the maximum is 20.26 and the minimum is 19.62; versus CPU runs on eight cores per
node, the average is 12.25, the maximum is 12.56 and the minimum is 11.96. The values around 20x are smaller than the
factor of 25x that we got in our first article [71], which only considered the case of a single GPU (and no MPI). The two rea-
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sons for that are that the Intel Nehalem processors used here as a reference are faster than the processors used in [71], and
that the Teslas S1070 that we use in this study have less memory bandwidth, ’100 GB/s external bandwidth compared to
’140 GB/s in the GeForce GTX 280 card used in [71].
6.2. Optimizations considered

Out of the 11.7% overhead associated to the parallel implementation of SPECFEM3D on a cluster of GPUs, on the order of
2.8% is solely due to the time spent waiting for a few remaining non-blocking MPI receives. Thus, less than 10% of the total
time is associated with building and processing the MPI buffers that transfer boundary data of slices between the GPUs.
These buffers contain the acceleration data on the four surface planes of each slice (also called cut planes). They are filled
and emptied by specialized kernels responsible for both extracting and merging the cut planes from/to the 3D local accel-
eration arrays. Data from the four cut planes are merged into a single array to minimize the number of individual transfers
between host and device through the PCIe bus. Although the buffer must again be broken up on the CPU to communicate the
data to four different slices via MPI non-blocking sends, this approach is more efficient than transferring four individual cut
planes via PCIe.

The time to transfer these buffers between the host and the device, included in the 10% overhead, could, in principle be
partly overlapped with calculations using the CUDA ‘‘stream” or ‘‘zero copy” mechanisms. Streams are a mechanism of
asynchronous data transfer, which facilitates overlap of kernel and CPU computation, and device/host transfers. Streams
and kernels have an associated stream ID. Kernels and data transfers via streams can be overlapped automatically by
the hardware/driver if their IDs are different. Assuming N streams, we can theoretically overlap N � 1 transfers out of N,
notwithstanding the additional overhead cost of the N different transfers. We performed tests that yielded only diminish-
ing returns compared to the block transfer of the entire cut plane data. Therefore, the additional complexity of the code is
not justified.

Zero copy, on the other hand, is a mechanism available since CUDA 2.2, which enables transparent data access from host
memory as if it were already stored on the device. The potential disadvantages of this approach are threefold: first, the use of
page-locked memory on the CPU, which then becomes unavailable for other functions; second, transfers go through the
PCIe-2 bus, and are necessarily slow compared to access to device memory without leaving the GPU; finally, the user has
no control over how data transfer is implemented by the system. Given the small potential return (if any) on coding invest-
ment, we decided not to implement streams or zero copy mechanisms in our code.

Data transfers to and from device memory on the GPU are most efficient when coalesced. If the access pattern of data does
not satisfy the constraints for maximum performance [8], yet have spatial locality, the texture hardware offers a good alter-
native. Using textures, memory requests are routed through a texture cache, thus accelerating transfers of data that are al-
ready cached. Only data loads are possible because there is no cache coherency. We have some uncoalesced reads in kernel 2
(cf. Fig. 5) because of the indirect addressing when reading from the global displacement and acceleration vectors at the level
of a given spectral element. We therefore implement these reads, through texture binding, to the displacement and accel-
eration arrays. Tests indicate that the total elapsed time spent per time step decreases by only one to two percent. We none-
theless keep the texture binding due to its straightforward implementation.
7. Conclusions and future work

We have investigated how to combine GPU CUDA programming with non-blocking message passing based on MPI on a
cluster of Tesla GPUs to accelerate a high-order finite-element software package that performs the numerical simulation of
seismic wave propagation. Such an application can be useful, for instance, to model seismic waves resulting from earth-
quakes or from active seismic experiments in the oil industry.

This application executes accurately in single precision. Hence, current GPU hardware, which is significantly faster for sin-
gle precision arithmetic, is suitable and sufficient.

We validated the algorithm by performing a comparison between the CUDA + MPI version and the original C + MPI ver-
sion of the code running on CPUs only. We subsequently modeled a real earthquake that occurred in Bolivia in 1994 and
obtained the same physical behavior as in real seismic data recorded during the event and available in the geophysical lit-
erature. We also obtained an excellent fit with an independent quasi-analytical solution computed based upon normal-mode
summation.

We then performed several numerical tests to compare performance between the GPU + MPI version and the original
C + MPI version without CUDA and showed that we obtain a speedup of 20x or 12x, depending on how the problem is
mapped to the reference CPU cluster.

In future work we would like to investigate using OpenCL [11,4] instead of CUDA to make the code portable to non-NVI-
DIA hardware, including multi-core systems. We also plan to examine any potential advantages of the multiple-kernel exe-
cution capabilities of the FERMI chip. We could also investigate how to handle more complex meshes with a non regular
domain decomposition topology, e.g. meshes decomposed based on a domain-decomposition library such as SCOTCH [87]
or METIS [88].
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